Skip to main content

Cho hình lăng trụ đứngABC.A’B’C’ có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AB và CB’.

Cho hình lăng trụ đứngABC.A’B’C’ có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và

Câu hỏi

Nhận biết

Cho hình lăng trụ đứngABC.A’B’C’ có đáy ABC là tam giác cân tại C, cạnh đáy AB bằng 2a và góc \widehat{ABC} = 300. Mặt phẳng (C’AB) tạo với đáy (ABC) một góc 600. Tính thể tích của khối lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AB và CB’.


A.
V = \frac{2a^{3}}{\sqrt{3}}  và khoảng cách d = \frac{a}{2}
B.
V = \frac{2a^{3}}{\sqrt{3}}  và khoảng cách d = \frac{a}{3}
C.
V = \frac{a^{3}}{\sqrt{3}}  và  khoảng cách d = \frac{a}{3}
D.
V = \frac{a^{3}}{\sqrt{3}}  và khoảng cách d = \frac{a}{2}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi M là trung điểm của AB. Tam giác CAB cân tại C suy ra AB ⊥ CM.

Mặt khác AB ⊥ CC’  

= >AB ⊥ (CMC’) => góc CMC’ = 600.

Gọi V là thể tích lăng trụ ABC.A’B’C’  thì  V = CC'.SABC

Ta có CM = BM.tan300\frac{a}{\sqrt{3}} 

=> SABC \frac{1}{2} CM.AB = \frac{a^{2}}{\sqrt{3}}

CC' = CM.tan600 = \frac{a}{\sqrt{3}}.√3 = a 

=> V = \frac{a^{2}}{\sqrt{3}}.a = \frac{a^{3}}{\sqrt{3}} 

Mặt phẳng (CA’B’) chứa CB’ và song song AB nên

d(AB,CB) = d(AB;(CA’B’)) = d(M;(CA’B’)) = MH , với N là trung điểm của A’B’ và H là hình chiếu của M trên CN.

Do MH ⊥ CN, MH ⊥ A’B’ => MH ⊥ (CA’B’)

Tam giác CMN vuông tại M nên

\frac{1}e_M{H^2} = \frac{1}e_M{C^2} + \frac{1}e_M{N^2} = \frac{4}e_{a^2} => d(AB.CB’) = MH = \frac{a}{2}

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.