Skip to main content

Trong không gian Oxyz cho mặt cầu (S): x2 + y2 + z2 - 2x + 2z - 2 = 0. Tìm điểm A thuộc mặt cầu (S) sao cho khoảng cách từ điểm A đến mặt phẳng (P) có phương trình 2x - 2y + x + 6 = 0 lớn nhất .

Trong không gian Oxyz cho mặt cầu (S): x2 + y2 + z2 - 2x + 2z - 2 = 0. Tìm điểm A thuộc

Câu hỏi

Nhận biết

Trong không gian Oxyz cho mặt cầu (S): x2 + y2 + z2 - 2x + 2z - 2 = 0. Tìm điểm A thuộc mặt cầu (S) sao cho khoảng cách từ điểm A đến mặt phẳng (P) có phương trình 2x - 2y + x + 6 = 0 lớn nhất .


A.
A(\dpi{100} \frac{7}{3};\frac{-4}{3};\frac{-1}{3})
B.
A(\dpi{100} \frac{-7}{3};\frac{-4}{3};\frac{-1}{3})
C.
A(\dpi{100} \frac{7}{3};\frac{4}{3};\frac{-1}{3})
D.
A(\dpi{100} \frac{7}{3};\frac{-4}{3};\frac{1}{3})
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có (S): (x - 1)2 + y2 + (z + 1)2 = 4 có tâm I(1; 0; -1) bán kính R = 2

Mặt phẳng (P): 2x - 2y + z + 6 = 0 có vecto pháp tuyến \dpi{100} \overrightarrow{n} = (2; -2; 1).

Gọi d là đường thẳng đi qua tâm I và vuông góc mặt phẳng (P) nên d có phương trình

\dpi{100} \left\{\begin{matrix} x=1+2t\\ y=-2t\\ z=-1+t \end{matrix}\right.

Tọa độ điểm A là giao của d với mặt cầu (S) có phương trình là

(2t)2 + (-2t)2 + t= 4 ⇔ t = ± \dpi{100} \frac{2}{3}

Suy ra A1(\dpi{100} \frac{7}{3};\frac{-4}{3};\frac{-1}{3}), A2(\dpi{100} \frac{-1}{3};\frac{4}{3};\frac{-5}{3})

Khi đó tính được d(A1, (P)) = \dpi{100} \frac{13}{3} > d(A2, (P)) = \dpi{100} \frac{1}{3}

Vậy tọa độ điểm A cần tìm là A(\dpi{100} \frac{7}{3};\frac{-4}{3};\frac{-1}{3}) .

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).