Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm P(-7; 8) và hai đường thẳng d1: 2x + 5y + 3 = 0; d2: 5x - 2y - 7 = 0 cắt nhau tại A. Viết phương trình đường thẳng d3 đi qua P tạo với d1, d2 thành tam giác cân tại A và có diện tich bằng 14,5.

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm P(-7; 8) và hai đường thẳng d1: 2x + 5y + 3

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho điểm P(-7; 8) và hai đường thẳng d1: 2x + 5y + 3 = 0; d2: 5x - 2y - 7 = 0 cắt nhau tại A. Viết phương trình đường thẳng d3 đi qua P tạo với d1, d2 thành tam giác cân tại A và có diện tich bằng 14,5.


A.
d3: 7x - 3y + 25 = 0
B.
d3: 7x + 3y + 25 = 0
C.
d3: 7x + 3y - 25 = 0
D.
d3: 3x + 3y + 25 = 0
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có A(1; -1) và d1 ⊥ d2

Phương trình các đường thẳng phân giác của các góc bởi d1, d2 là:

1: 7x + 3y - 4 = 0 và ∆2: 3x - 7y - 10 = 0

d3 tạo với d1, d2 một tam giác vuông cân => d3 vuông góc với ∆1 hoặc ∆2

=> phương trình d3 của có dạng: 7x + 3y + C = 0 hay 3x - 7y + C' = 0

Mặt khác, d3 qua P(-7; 8) nên C = 25; C' = 77

Suy ra: d3: 7x + 3y + 25 = 0 hay d3: 3x - 7y + 77 = 0

Theo giả thiết tam giác vuông cân có diện tích bằng \frac{29}{2}

=> cạnh huyền bằng \sqrt{58}

Suy ra độ dài đường cao AH = \frac{\sqrt{58}}{2} = d(A, d3)

Với d3: 7x + 3y + 25 = 0 thì d(A, d3) = \frac{\sqrt{58}}{2} (thỏa mãn)

Với d3: 3x - 7y + 77 = 0 thì d(A, d3) = \frac{87}{\sqrt{58}} (loại)

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.