Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại A, biết B và C đối xứng nhau qua gốc tọa độ O. Đường phân giác trong góc B của tam giác ABC là đường thẳng (d): x + 2y - 5 = 0. Tìm tọa độ các đỉnh của tam giác ABC, biết đường thẳng AC đi qua điểm K(6; 2).

Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại A, biết B và C đối xứng nhau

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC vuông tại A, biết B và C đối xứng nhau qua gốc tọa độ O. Đường phân giác trong góc B của tam giác ABC là đường thẳng (d): x + 2y - 5 = 0. Tìm tọa độ các đỉnh của tam giác ABC, biết đường thẳng AC đi qua điểm K(6; 2).


A.
A(\frac{31}{5};\frac{17}{5}); B(-5; 0), C(5; 0)
B.
A(\frac{31}{5};\frac{17}{5}); B(-5; 5), C(5; -5)
C.
A(\frac{31}{5};\frac{17}{5}); B(-1; 5), C(1; -5)
D.
A(\frac{31}{5};\frac{17}{5}); B(-5; -5), C(5; 5)
Đáp án đúng: B

Lời giải của Luyện Tập 365

B ∈ (d): x + 2y - 5 = 0 nên gọi B(5 - 2b; b) vì B, C đối xứng nhau qua O suy ra C(2b - 5; -b) và O(0; 0) ∈ BC

Gọi I đối xứng với O qua phân giác trong góc B là (d): x + 2y - 5 = 0 nên

I(2; 4) và I ∈ (AB)

Tam giác ABC vuông tại A nên \overrightarrow{BI} = (2b - 3; 4 - b) vuông góc với

\overrightarrow{CK} = (11 - 2b; 2 + b)

(2b - 3)(11 - 2b) + (4 - b)(2 + b) = 0 <=> -5b+ 30b - 25 = 0

<=> \begin{bmatrix} b=1\\ b=5 \end{matrix}

Với b = 1 => B(3; 1), C(-3; -1) => A(3; 1) ≡  B(loại)

Với b = 5 => B(-5; 5), C(5; -5) => A(\frac{31}{5};\frac{17}{5})

Vậy A(\frac{31}{5};\frac{17}{5}); B(-5; 5), C(5; -5)

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.