Skip to main content

Xét tập hợp các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số {0; 1; 2; 3; 5; 6; 7; 8}. Chọn ngẫu nhiên một phần tử của tập hợp trên. Tính xác suất để phần tử đó là một số chia hết cho 5.

Xét tập hợp các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số {0; 1; 2; 3; 5;

Câu hỏi

Nhận biết

Xét tập hợp các số tự nhiên có 5 chữ số khác nhau được lập từ các chữ số {0; 1; 2; 3; 5; 6; 7; 8}. Chọn ngẫu nhiên một phần tử của tập hợp trên. Tính xác suất để phần tử đó là một số chia hết cho 5.


A.
 P(A) = \frac{17}{49}
B.
 P(A) = \frac{13}{49}
C.
 P(A) = \frac{28}{49}
D.
 P(A) = \frac{24}{49}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Gọi A là biến cố lập được số tự nhiên chia hết cho 5, có 5 chữ số khác nhau .

Số các số tự nhiên gồm 5 chữ số khác nhau kể cả số 0 đứng đầu: A_{8}^{5}

Số các số tự nhiên gồm 5 chữ số khác nhau và có số 0 đứng đầu là: A_{7}^{4} số.

Số các số tự nhiên gồm 5 chữ số khác nhau: A_{8}^{5} - A_{7}^{4} = 5880 số .

Số các số tự nhiên chia hết cho 5 có 5 chữ số khác nhau:

 A_{7}^{4} + 6A_{6}^{3} = 1560 số

=> n(A) = 1560

Ta có n(Ω ) = 5880, n(A) = 1560 => P(A) = \frac{1560}{5880} = \frac{13}{49}

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}