Skip to main content

Trên mặt phẳng toạ độ Oxy cho đường thẳng ∆: x + y + 4 = 0 và hai elíp  (E1): \frac{x^{2}}{10}+\frac{y^{2}}6{} = 1 và (E2): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1 (a > b > 0) có cùng tiêu điểm. Biết rằng (E2) đi qua điểm M thuộc đường thẳng ∆. Tìm toạ độ điểm M sao cho elíp (E2) có độ dài trục lớn nhỏ nhất.

Trên mặt phẳng toạ độ Oxy cho đường thẳng ∆: x + y + 4 = 0 và hai elíp 
(E1):  =

Câu hỏi

Nhận biết

Trên mặt phẳng toạ độ Oxy cho đường thẳng ∆: x + y + 4 = 0 và hai elíp 

(E1): \frac{x^{2}}{10}+\frac{y^{2}}6{} = 1 và (E2): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} = 1 (a > b > 0) có cùng tiêu điểm. Biết rằng (E2) đi qua điểm M thuộc đường thẳng ∆. Tìm toạ độ điểm M sao cho elíp (E2) có độ dài trục lớn nhỏ nhất.


A.
M (- \frac{1}{2} ;-\frac{3}{2})
B.
M (\frac{1}{2} ;\frac{3}{2})
C.
M (- \frac{5}{2} ;-\frac{3}{2})
D.
M (1; 0)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Hai elíp có các tiêu điểm F1(-2; 0), F2(2; 0)

Điểm M ∈ (E2) => MF+ MF2 = 2a.

Vậy (E2) có độ dài trục lớn nhỏ nhất khi và chỉ khi MF+ MF2 nhỏ nhất. 

Ta có:  F1, F2 cùng phía với ∆

Gọi N(x, y) là điểm đối xứng với F2 qua ∆, suy ra N(-4; -6).

Ta có MF+ MF2 = MF+ MN ≥ NF1 (không đổi )

Dấu bằng xảy ra khi và chỉ khi M = NF1 ∩ ∆

Toạ độ điểm M :\begin{cases} 3x -y+6 =0\\ x+y+4=0 \end{cases} <=>\begin{cases} x=-\frac{5}{2}\\ y=-\frac{3}{2} \end{cases} =>M (- \frac{5}{2} ;-\frac{3}{2}).

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).