Skip to main content

Trong hệ trục tọa độ Oxy cho đường thẳng (d): x − y + 23 = 0. Tìm tọa độ các đỉnh của hình vuông ABCD biết điểm A thuộc trục Ox, điểm B thuộc trục Oy, đường thẳng qua AB vuông góc với đường thẳng (d) và diện tích hình vuông ABCD bằng 8 .

Trong hệ trục tọa độ Oxy cho đường thẳng (d): x − y + 23 = 0. Tìm tọa độ các đỉnh của hình

Câu hỏi

Nhận biết

Trong hệ trục tọa độ Oxy cho đường thẳng (d): x − y + 23 = 0. Tìm tọa độ các đỉnh của hình vuông ABCD biết điểm A thuộc trục Ox, điểm B thuộc trục Oy, đường thẳng qua AB vuông góc với đường thẳng (d) và diện tích hình vuông ABCD bằng 8 .


A.
A(2;0), B(0; 2), C(2; 4), D( 4; 2)
B.
A(2;0), B(0; 2), C(-2; 0), D( 0; -2)
C.
A(-2;0), B(0;-2), C(2; 0), D( 0; 2) hoặc A(-2;0), B(0;-2), C(-2; -4), D(- 4;-2)
D.
Cả 3 đáp án trên.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Vì AB vuông góc với (d) nên phương trình (AB) có dạng  y = -x + c (∆)

(∆) ∩ Ox A(c; 0)), (∆) ∩ Oy = B(0; c) vì ABCD là hình vuông có diện tích bằng 8 nên ta có phương trình. AB= 2c2 = 8  => c= 4 => = ±2

Vậy 4 đỉnh của hình vuông lần lượt có tọa độ là :

A(2;0), B(0; 2), C(2; 4), D( 4; 2)  hoặc 

A(2;0), B(0; 2), C(-2; 0), D( 0; -2) hoặc

A(-2;0), B(0;-2), C(2; 0), D( 0; 2)  hoặc

A(-2;0), B(0;-2), C(-2; -4), D(- 4;-2)

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.