Skip to main content

Cho 3 số dương x, y , z có tổng bằng 1. Chứng minh bất đẳng thức: \tiny \sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}} ≤ \tiny \frac{3}{2}

Cho 3 số dương x, y , z có tổng bằng 1. Chứng minh bất đẳng thức:
 ≤ 

Câu hỏi

Nhận biết

Cho 3 số dương x, y , z có tổng bằng 1. Chứng minh bất đẳng thức:

\tiny \sqrt{\frac{xy}{xy+z}}+\sqrt{\frac{yz}{yz+x}}+\sqrt{\frac{zx}{zx+y}} ≤ \tiny \frac{3}{2}


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: x + y + z = 1 => z = 1 - x - y => xy + z = (1 - x)(1 - y)

=>\tiny \sqrt{\frac{xy}{xy+z}} = \sqrt{\frac{xy}{(1-x)(1-y)}} = \sqrt{\frac{y}{1-x}\frac{x}{1-y}} 

≤ \frac{1}{2}(\frac{y}{1-x} + \frac{x}{1-y} \right)

Tương tự: \sqrt{\frac{yz}{yz+x}} ≤ \frac{1}{2} (\frac{z}{1-y} + \frac{y}{1-z})  ;

 \sqrt{\frac{zx}{zx+y}} ≤ \frac{1}{2}( \frac{z}{1-x} +\frac{x}{1-z}\right)

=> VT ≤ \frac{1}{2}(\frac{y+z}{1-x} +\frac{x+z}{1-y}+\frac{x+y}{1-z}\right) = \frac{3}{2}

Dấu đẳng thức xảy ra khi và chỉ khi x = y = z = \tiny \frac{1}{3}.

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.