Skip to main content

Một tổ học sinh có 4 em Nữ và 5 em Nam được xếp thành một hàng dọc. Tính xác suất để chỉ có hai em nữ A , B đứng cạnh nhau còn các em nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh A, B. 

Một tổ học sinh có 4 em Nữ và 5 em Nam được xếp thành một hàng dọc. Tính xác suất đ

Câu hỏi

Nhận biết

Một tổ học sinh có 4 em Nữ và 5 em Nam được xếp thành một hàng dọc. Tính xác suất để chỉ có hai em nữ A , B đứng cạnh nhau còn các em nữ còn lại không đứng cạnh nhau và cũng không đứng cạnh A, B. 


A.
\frac{1}{63}
B.
\frac{4}{63}
C.
\frac{5}{63}
D.
\frac{2}{63}
Đáp án đúng: C

Lời giải của Luyện Tập 365

+ Không gian mẫu:P= 9! cách xếp một hàng dọc.

+ Số cách xếp 5 bạn Nam là:  P5 = 5!

+ Số cách xếp 4 bạn Nữ trong đó bạn A và B đứng cạnh nhau (A và B hoán vị nhau) là:  2A_6^{3} = 2\frac{6!}{3!}   (Chú ý giữa 5 em Nam có 6 vị trí để xếp Nữ vào) Vậy     P =   \frac{2.6!.5!}{3!.9!}=\frac{5}{63}

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.