Skip to main content

Trong không gian Oxyz cho mặt phẳng (P): x - 2y + 2z - 1 = 0 và hai đường thẳng d1 và d2 lần lượt có phương trình: d1 : \left\{\begin{matrix} x=1+2t & \\y=3-3t & \\z=2t & \end{matrix}\right.        d2 : \left\{\begin{matrix} x=1+2s & \\y=-1+s & \\ z=2-s & \end{matrix}\right. , s và t là tham số. Lập phương trình mặt phẳng (Q) chứa d1 và vuông góc với mặt phẳng (P)

Trong không gian Oxyz cho mặt phẳng (P): x - 2y + 2z - 1 = 0 và hai đườn

Câu hỏi

Nhận biết

Trong không gian Oxyz cho mặt phẳng (P): x - 2y + 2z - 1 = 0 và hai đường thẳng d1 và d2 lần lượt có phương trình: d1 : \left\{\begin{matrix} x=1+2t & \\y=3-3t & \\z=2t & \end{matrix}\right.        d2 : \left\{\begin{matrix} x=1+2s & \\y=-1+s & \\ z=2-s & \end{matrix}\right. , s và t là tham số. Lập phương trình mặt phẳng (Q) chứa d1 và vuông góc với mặt phẳng (P)


A.
(Q): 2x + 2y +z - 8 = 0
B.
(Q): 2x - 2y + z - 8 = 0
C.
(Q): 2x + 2y - z - 8 = 0
D.
(Q): 2x + 2y + z + 8 = 0
Đáp án đúng: A

Lời giải của Luyện Tập 365

Lập phương trình mặt phẳng (Q) chứa d1 và vuông góc với (P). Mặt phẳng (P) có một vecto pháp tuyến là: \overrightarrow{n_{p}} = (1 ; -2 ; 2); d1 có một vecto chỉ phương là: \overrightarrow{u_{1}} = (2 ; -3 ; 2). Do (Q) là mặt phẳng chứa d1 và vuông góc với (P) nên chọn một vecto pháp tuyến cho (Q) là: \overrightarrow{n_{Q}} = [\overrightarrow{u_{1}} , \overrightarrow{n_{p}}] = (2 ; 2 ; 1)

Vậy (Q): \left\{\begin{matrix} quaM_{1}(1;3;0)\\VTPT:\overrightarrow{n_{Q}} =(2;2;1) \end{matrix}\right. ⇒ (Q): 2(x - 1) + 2(y - 3) + 1(z - 0) = 0

Hay phương trình mặt phẳng (Q): 2x + 2y +z - 8 = 0

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.