Skip to main content

Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1; 1; 1), B(3; 5; 2) và C(3;1;−3). Chứng minh 3 điểm A, B, C là 3 đỉnh của một tam giác vuông. Tính bán kính đường tròn ngoại tiếp ∆ABC.

Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1; 1; 1), B(3; 5; 2) và C(3;

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz cho ba điểm A(1; 1; 1), B(3; 5; 2) và C(3;1;−3). Chứng minh 3 điểm A, B, C là 3 đỉnh của một tam giác vuông. Tính bán kính đường tròn ngoại tiếp ∆ABC.


A.
R = \frac{\sqrt{47}}{2}
B.
R = \frac{\sqrt{45}}{2}
C.
R = \frac{\sqrt{43}}{2}
D.
R = \frac{\sqrt{41}}{2}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có \overrightarrow{AB} = (2; 4; 1), \overrightarrow{AC} = (2; 0;−4) không cùng phương . 

Ta lại có \overrightarrow{AB}\overrightarrow{AC} = 0 vậy ∆ABC vuông tại A

∆ABC vuông tại A theo chứng minh trên có bán kính đường tròn ngoại tiếp

R = \frac{1}{2}BC = \frac{\sqrt{41}}{2}

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.