Skip to main content

Trong mặt phẳng tọa độ Oxy , cho parabol (P): y2 = 2x và điểm K(2; 0). Đường thẳng d đi qua K cắt (P) tại 2 điểm phân biệt M, N. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác OMN nằm trên đường thẳng d  

Trong mặt phẳng tọa độ Oxy , cho parabol (P): y2 = 2x và điểm K(2; 0). Đ

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy , cho parabol (P): y2 = 2x và điểm K(2; 0). Đường thẳng d đi qua K cắt (P) tại 2 điểm phân biệt M, N. Chứng minh rằng tâm đường tròn ngoại tiếp tam giác OMN nằm trên đường thẳng d

 


A.
I ∈ d
B.
I ≠ d
C.
\dpi{100} \notin d 
D.
I ≠ Oy
Đáp án đúng: A

Lời giải của Luyện Tập 365

Trường hợp 1. d ⊥ Ox => d: x = 2. Từ x = 2 và y2 = 2x => M(2; 2) và N(2; -2)

=> \overrightarrow{OM}.\overrightarrow{ON} = 0 (1)

Trường hợp 2: d ⊥ Ox => d: y = kx - 2k. Tọa độ M, N là nghiệm của

\left\{\begin{matrix} y=kx-2k\\ y^{2}=2x \end{matrix}\right.⇔ \left\{\begin{matrix} x=\frac{y^{2}}{2}\\ y=k.\frac{y^{2}}{2} -2k\end{matrix}\right. => ky2 – 2y – 4k = 0  (2)

Để d cẳt (P) tại M, N phân biệt thì (2) phải có nghiệm phân biệt ⇔ k ≠ 0

Gọi M(\frac{y^{2}_{1}}{2} ; y1), N(\frac{y^{2}_{2}}{2}; y2) trong đó  y1, y2 là nghiệm của (2)

Ta có \overrightarrow{OM}.\overrightarrow{ON}=(\frac{y_{1}.y_{2}}{2})^{2}   + y1.y2 = (-2)2 + (-4) = 0  (3)

Từ (1) và (3) suy ra góc MON = 900 => ∆OMN vuông tại O.

Suy ra tâm I của đường tròn ngoại tiếp ∆OMN là trung điểm MB => I ∈ d

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.