Skip to main content

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,mặt bên SAB là tam giác đều, SC = a√2 . Gọi M là trung điểm của AD. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa 2 đường thẳng CM và SD.

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,mặt bên SAB là tam giác đều,

Câu hỏi

Nhận biết

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a,mặt bên SAB là tam giác đều, SC = a√2 . Gọi M là trung điểm của AD. Tính thể tích của khối chóp S.ABCD và khoảng cách giữa 2 đường thẳng CM và SD.


A.
V = 2a3; d(CM; SD) = \frac{a\sqrt{3}}{2\sqrt{10}}
B.
V = \frac{a^{2}\sqrt{3}}{6}; d(CM; SD) = 4a
C.
V = \frac{a^{2}\sqrt{3}}{3}; d(CM; SD) = \frac{a\sqrt{3}}{2\sqrt{10}}
D.
V = \frac{a^{2}\sqrt{3}}{6}; d(CM; SD) = \frac{a\sqrt{3}}{2\sqrt{10}}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Gọi H là trung điểm của AB, vì tam giác SAB đều nên SH ⊥ AB (1)

Tam giác SBC có SB = BC = a, SC = a√2 nên vuông tại B

BC ⊥ AB, BC ⊥ SB => BC ⊥ (SAB) => SH ⊥ BC      (2)

Từ (1) và (2) => SH ⊥ (ABCD)

V = \frac{1}{3} SH.SABCD \frac{1}{3}.\frac{a\sqrt{3}}{2} .a2\frac{a^{2}\sqrt{3}}{6}

Dễ dàng chứng minh được CM ⊥ HD

Ta có HD ⊥ CM, SH ⊥ CM => CM ⊥ (SHD)

Gọi I là giao điểm của CM và HD. Kẻ IK ⊥ SD thì IK là đoạn vuông góc chung của CM và SD.

Xét tam giác SHD, IKD tính được 

IK = \frac{a\sqrt{3}}{2\sqrt{10}} => d(CM; SD)=\frac{a\sqrt{3}}{2\sqrt{10}}

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.