Skip to main content

Cho 3 số dương thay đổi a, b, c thỏa mãn a2 + b2 + c2 = 3. Tìm giá trị nhỏ nhất của biểu thức A = (2 - a)(2 - b)(2 - c)

Cho 3 số dương thay đổi a, b, c thỏa mãn a2 + b2 +

Câu hỏi

Nhận biết

Cho 3 số dương thay đổi a, b, c thỏa mãn a+ b+ c= 3. Tìm giá trị nhỏ nhất của biểu thức A = (2 - a)(2 - b)(2 - c)


A.
min A = \frac{25}{27}
B.
min A = \frac{24}{27}
C.
min A = \frac{22}{27}
D.
min A = \frac{19}{27}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Không mất tính tổng quat giả sử c = Min{a; b; c} thì 0 ≤ c ≤ 1

Ta có: (2 - a)(2 - b) = 4 - 2(a + b) + \frac{(a+b)^{2}}{2}+\frac{c^{2}-3}{2}\geq \frac{c^{2}+1}{2}

Xét hàm số f(x) = (x+ 1)(2 - x)

f'(x) = -3x+ 4x - 1 , f'(x) = 0 <=> \left [ \begin{matrix} x=1\\ x=\frac{1}{3} \end{matrix}

Từ bảng biến thiên (học sinh tự lập) ta có:A ≥  \frac{1}{2}f(\frac{1}{3})  ≥ \frac{25}{27}

Khi a = \frac{5}{3}, b = \frac{1}{3}, c = \frac{1}{3} thì A = \frac{25}{27} . Vậy min A = \frac{25}{27}

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .