Skip to main content

Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng:     \frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+3}}\geq 3

Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng:   

Câu hỏi

Nhận biết

Cho a,b,c là các số dương thỏa mãn a + b + c = 1. Chứng minh rằng:    

\frac{a+b}{\sqrt{ab+c}}+\frac{b+c}{\sqrt{bc+a}}+\frac{c+a}{\sqrt{ca+3}}\geq 3


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: \frac{a+b}{\sqrt{ab+c}}=\frac{1-c}{\sqrt{ab+1-a-b}}=\frac{1-c}{\sqrt{(1-a)(1-b)}}

Tương tự ta có: 

\frac{b+c}{\sqrt{bc+a}}=\frac{1-a}{\sqrt{bc+1-b-c}}=\frac{1-a}{\sqrt{(1-b)(1-c)}}

\frac{c+a}{\sqrt{ca+b}}=\frac{1-b}{\sqrt{ac+1-a-c}}=\frac{1-b}{\sqrt{(1-c)(1-a)}}

Do đó: VT = \frac{1-c}{\sqrt{(1-a)(1-b)}}+\frac{1-b}{\sqrt{(1-c)(1-a)}}+\frac{1-a}{\sqrt{(1-b)(1-c)}}

 

Do a,b,c dương và a+b+c=1 nên a,b,c thuộc khoảng (0;1)

=> 1-a,1-b,1-c dương

Áp dụng bất đẳng thức Côsi cho ba số dương ta được:

VT ≥ 3\sqrt[3]{\frac{(1-a)(1-b)(1-c)}{(1-a)(1-b)(1-c)}} = 3

Đẳng thức xảy ra khi: a = b = c = \frac{1}{3}

 

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).