Skip to main content

Trong không gian tọa độ Oxyz cho đường thẳng ∆: \frac{x}{2} = \frac{y-1}{1} = \frac{z}{2}. Xác định tọa độ của điểm M trên trục hoành sao cho khoảng cách từ M đến ∆ bằng OM

Trong không gian tọa độ Oxyz cho đường thẳng∆:

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz cho đường thẳng ∆: \frac{x}{2} = \frac{y-1}{1} = \frac{z}{2}. Xác định tọa độ của điểm M trên trục hoành sao cho khoảng cách từ M đến ∆ bằng OM


A.
M(1 ; 0 ; 0) hay M(-2 ; 0 ; 0)
B.
M(-1 ; 0 ; 0) hay M(--2 ; 0 ; 0)
C.
M(-1 ; 0 ; 0) hay M(2 ; 0 ; 0)
D.
M(1 ; 0 ; 0) hay M(2 ; 0 ; 0)
Đáp án đúng: C

Lời giải của Luyện Tập 365

d(M ;  ∆) = \frac{|\overrightarrow{NM}.\overrightarrow{a_{A}}|}{|\overrightarrow{a_{A}}|} với M ∈ Ox ⇔ M(m ; 0 ; 0)

∆ qua N(0 ; 1 ; 0) có VTCP \overrightarrow{a} = (2 ; 1 ; 2)

\overrightarrow{NM} = (m ; -1 ; 0) ⇒ [\overrightarrow{a} ; \overrightarrow{NM}] = (2 ; 2m ; -2 - m)

Ta có: d(M ; ∆) = OM ⇔ \frac{|[\overrightarrow{a}.\overrightarrow{NM}]|}{|\overrightarrow{a}|} = OM ⇔ \frac{\sqrt{5m^{2}+4m+8}}{3} = |m|

⇔ 4m2 – 4m – 8 = 0 ⇔ m = -1 hay m = 2. Vậy M(-1 ; 0 ; 0) hay M(2 ; 0 ; 0)

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.