Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho đường thẳng ∆: 2x -5y + 16 = 0 và đường tròn (C) : x2 + y2 – 2y – 4 = 0. Tìm  điểm M nằm  trên đường thẳng ∆ sao cho từ đó kẻ được hai tiếp tuyến đến đường tròn (C) và độ dài đoạn thẳng nối hai tiếp điểm bằng √10 

Trong mặt phẳng với hệ trục Oxy, cho đường thẳng∆: 2x -5y + 16 = 0

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho đường thẳng ∆: 2x -5y + 16 = 0 và đường tròn (C) : x2 + y2 – 2y – 4 = 0. Tìm  điểm M nằm  trên đường thẳng ∆ sao cho từ đó kẻ được hai tiếp tuyến đến đường tròn (C) và độ dài đoạn thẳng nối hai tiếp điểm bằng √10 


A.
M(-3;8),M(\frac{43}{29};\frac{110}{29})
B.
M(-3;2),M(\frac{43}{29};\frac{110}{29})
C.
M(3;2),M(\frac{43}{29};\frac{110}{29})
D.
M(-3;6),M(\frac{43}{29};\frac{110}{29})
Đáp án đúng: B

Lời giải của Luyện Tập 365

Đường tròn (C) có tâm I(0;1), bán kính R = √5 

Gọi A,B là hai tiếp điểm của hai tiếp tuyến kẻ từ M tới đường tròn (C) và H là trung điểm của AB. Khi đó AH = \frac{1}{2} AB = \frac{\sqrt{10}}{2}

Áp dụng hệ thức lượng trong tam giác vuông MAI vuông tại A, với đường cao AH ta có 

\frac{1}{AH^{2}} = \frac{1}{AM^{2}} + \frac{1}{AI^{2}} ⇔ \frac{2}{5}  = \frac{1}{AM^{2}} + \frac{1}{5} ⇒  AM = √5

Khi đó MI =\frac{AM.AI}{AH} = √10

Vì M ∈ ∆: 2x - 5y + 16 = 0 ⇒  M(5t - 8; 2t). Ta có 

MI = √10  ⇔ (5t – 8)2 + (2t – 1)2 = 10 ⇔ 29t2– 84t + 55 = 0 ⇔ \begin{bmatrix} t=1\\t=\frac{55}{29} \end{bmatrix}

Từ đó 2 điểm thỏa mãn bài toán M(-3;2),M(\frac{43}{29};\frac{110}{29})

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.