Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD, A(−1;2). Gọi M, N lần lượt là trung điểm của AD và DC , E là giao điểm của BN với CM . Viết phương trình đường tròn ngoại tiếp tam giác BME  biết BN :2x+y−8 = 0 và B có hoành độ lớn hơn 2.

Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD, A(−1;2). Gọi M,

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy , cho hình vuông ABCD, A(−1;2). Gọi M, N lần lượt là trung điểm của AD và DC , E là giao điểm của BN với CM . Viết phương trình đường tròn ngoại tiếp tam giác BME  biết BN :2x+y−8 = 0 và B có hoành độ lớn hơn 2.


A.
(x-2)2+(y-3)2=5
B.
(x-1)2+(y-1)2=5
C.
(x-1)2+(y-3)2=5
D.
(x-1)2+(y-2)2=5
Đáp án đúng: C

Lời giải của Luyện Tập 365

• Gọi H là hình chiếu của A trên BN, AH=d(A, BN) = \frac{8}{\sqrt{5}}Đặt AB = a ,a > 0  Ta có AH đi qua trung điểm I của BC

AI=\sqrt{a^{2}+\frac{a^{2}}{4}}=\frac{a\sqrt{5}}{2}

AB2=AH.AI \Leftrightarrow a^{2}=\frac{8}{\sqrt{5}}.\frac{a\sqrt{5}}{2}\Leftrightarrow a=4 =AB

Do B \in BN => B(t;8-2t)

AB=4 \Leftrightarrow \sqrt{(t+1)^{2}+(6-2t)^{2}}=4\Leftrightarrow 5t2-22t+21=0 \Leftrightarrow \left [ \begin{matrix} t=\frac{7}{5}(l) & \\ t=3& \end{matrix}\right.\Rightarrow B(3;2)

 

AD đi qua A và vuông góc với AB => AD: x=-1

Gọi J = AD \cap BN => J(-1;10)

D là trung điểm AJ => D(-1;6) => M(-1;4)

Ta có \DeltaBME vuông tại E, nên tâm đường tròn ngoại tiếp K là trung điêm BM => K(1;3), bán kính R=KB=\sqrt{5}

Vậy đường tròn cần tìm là: (x-1)2+(y-3)2=5

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.