Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy cho e líp \frac{x^{2}}{4}+\frac{y^{2}}{3} = 1 và đường thẳng  ∆:3x + 4y − 12 = 0. Từ điểm M bất kỳ trên ∆ kẻ tới (E) các tiếp tuyến MA, MB. Chứng minh đường thẳng AB luôn đi qua một điểm cố định.

Trong mặt phẳng với hệ tọa độ Oxy cho e líp

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy cho e líp \frac{x^{2}}{4}+\frac{y^{2}}{3} = 1 và đường thẳng  ∆:3x + 4y − 12 = 0. Từ điểm M bất kỳ trên ∆ kẻ tới (E) các tiếp tuyến MA, MB. Chứng minh đường thẳng AB luôn đi qua một điểm cố định.


A.
Click để xem đáp án.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi M(x0; y0); A(x1; y1); B((x2; y2).

Tiếp tuyến tại A có dạng : \frac{xx_{1}}{4}+\frac{yy_{1}}{3} = 1            

Tiếp tuyến đi qua M nên \frac{x_{0}x_{1}}{4}+\frac{y_{0}y_{1}}{3} = 1   (1)

Ta thấy tọa độ của A và B đều thỏa mãn (1) nên đường thẳng AB có phương trình  \frac{xx_{0}}{4}+\frac{yy_{0}}{3} = 1 

Do M thuộc ∆ nên 3x+ 4y= 12 =>  4y= 12 - 3x0

\rightarrow 4\frac{xx_{0}}{4}+4\frac{yy_{0}}{3}=4\rightarrow \frac{4xx_{0}}{4}+\frac{y(12-3x_{0})}{3}=4

Gọi F(x; y) là điểm cố định mà AB đi qua với mọi M thì (x - y)x0 + 4y – 4 = 0

\rightarrow \left\{\begin{matrix} x-y=0 & \\ 4y-4=0 & \end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=1 & \\ x=1 & \end{matrix}\right.

  Vậy AB luôn đi qua điểm cố định F(1; 1)

 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.