Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y + 3 = 0. Viết phương trình đường thẳng đi qua điểm A(2; - 4) và tạo với đường thẳng d một góc bằng 450.

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y + 3 = 0. Viết phương t

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d : x + y + 3 = 0. Viết phương trình đường thẳng đi qua điểm A(2; - 4) và tạo với đường thẳng d một góc bằng 450.


A.
Phương trình ∆ : y - 4 = 0, hoặc x + 2 = 0.
B.
Phương trình ∆ : y + 4 = 0, hoặc x – 2 = 0.
C.
Phương trình ∆ : y - 4 = 0, hoặc x – 2 = 0.
D.
Phương trình ∆ : y + 4 = 0, hoặc x + 2 = 0.
Đáp án đúng: B

Lời giải của Luyện Tập 365

Phương trình của đường thẳng ∆ qua A(2; - 4) và có vectơ pháp tuyến vec{v} = (a, b) là a(x – 2) + b(y + 4) = 0, với a2 + b2 ≠ 0.

Vectơ pháp tuyến của d là  vec{u}= (1; 1). Do đó cos(d, ∆) = frac{|a+b|}{sqrt{2}.sqrt{a^{2}+b^{2}}}.

cos(d, ∆) = cos450 ⇔ ab = 0 .

Với a = 0, ta có phương trình ∆ : y + 4 = 0 ; với b = 0 , ta có phương trình ∆: x – 2 = 0.

Câu hỏi liên quan

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.