Skip to main content

Trong mặt phẳng với hệ toạ độ Oxy cho điểm C(2;-5 ) và đường thẳng ∆: 3x - 4y + 4 =0. Tìm trên ∆ hai điểm A và B đối xứng nhau qua I(2;\inline \frac{5}{2}) sao cho diện tích tam giác ABC bằng 15.

Trong mặt phẳng với hệ toạ độ Oxy cho điểm C(2;-5 ) và đường thẳng ∆: 3x - 4y

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ toạ độ Oxy cho điểm C(2;-5 ) và đường thẳng ∆: 3x - 4y + 4 =0. Tìm trên ∆ hai điểm A và B đối xứng nhau qua I(2;\inline \frac{5}{2}) sao cho diện tích tam giác ABC bằng 15.


A.
A(0;1) và B(4;4) hoặc A(4;4) và B(0;1)
B.
A(2;1) và B(2;4) hoặc A(2;4) và B(2;1)
C.
A(3;3) và B(1;2) hoặc A(1;2) và B(3;3)
D.
A(2;2) và B(2;3) hoặc A(2;3) và B(2;2)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi A(a;\inline \frac{3a+4}{4}

Do A và B đối xứng nhau qua I(2;\inline \frac{5}{2}) nên B(4-a;\inline \frac{16-3a}{4})

Ta có: d(C;∆) = 6

=> SABC\inline \frac{1}{2}.AB.d(C;∆) = 3AB

Theo bài ra SABC = 15 => AB = 5 

<=> AB2 = 25

<=> (4-2a)2 + ((3- \inline \frac{3}{2}a)2 = 25

<=> a =0 hoặc a = 4

Vậy hai điểm cần tìm là A(0;1) và B(4;4) hoặc A(4;4) và B(0;1)

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1