Skip to main content

Trong mặt phẳng tọa độ Oxy viết phương trình chính tắc của elip (E) biết 2 đỉnh thuộc trục tung cùng với 2 tiêu điểm tạo thành 4 đỉnh của 1 hình vuông có diện tích bằng 32.

Trong mặt phẳng tọa độ Oxy viết phương trình chính tắc của elip (E) biết 2 đỉnh thuộc trục

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy viết phương trình chính tắc của elip (E) biết 2 đỉnh thuộc trục tung cùng với 2 tiêu điểm tạo thành 4 đỉnh của 1 hình vuông có diện tích bằng 32.


A.
 \frac{x^2}{32} + \frac{y^2}{16} = 2
B.
 \frac{x^2}{32} + \frac{y^2}{16} = 11
C.
 \frac{x^2}{32} + \frac{y^2}{16} = -1
D.
 \frac{x^2}{32} + \frac{y^2}{16} = 1
Đáp án đúng: D

Lời giải của Luyện Tập 365

Phương trình elip có dạng: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 ( a > b > 0) , c = \sqrt{a^2 - b^2}

(E) có các đỉnh thuộc Oy là B(0;b), B’(0; -b) và 2 tiêu điểm F(c;0), F’(-c;0)

Để 4 điểm này lập thành hình vuông thì b = c

Cạnh của hình vuông BFF’B’ là BF = 4√2 = OB. √2 = b√2 => b = c = 4

Vậy a2 + b2 + c2 = 2b2 = 32,

Phương trình elip là: \frac{x^2}{32} + \frac{y^2}{16} = 1

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx