Skip to main content

Trong mặt phẳng tọa độ Oxy cho tam giác ABC có phương trình chứa đường cao và đường trung tuyến kẻ từ đỉnh A lần lượt có phương trình x-2y-13=0 và 13x-6y-9=0. Tìm tọa độ B,C biết tâm đường tròn ngoại tiếp tam giác ABC là I(-5;1)

Trong mặt phẳng tọa độ Oxy cho tam giác ABC có phương trình chứa đường c

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho tam giác ABC có phương trình chứa đường cao và đường trung tuyến kẻ từ đỉnh A lần lượt có phương trình x-2y-13=0 và
13x-6y-9=0. Tìm tọa độ B,C biết tâm đường tròn ngoại tiếp tam giác ABC là I(-5;1)


A.
B(2;3), C(2;0)
B.
B(4;2), C(1;3) hoặc B(2;7),C(4;3)
C.
B(4;3), C(2;7)
D.
B(4;3), C(2;7) hoặc B(2;7),C(4;3)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có A(-3;-8). Gọi M là trung điểm BC =>IM//AH

Ta suy ra phương trình IM:x-2y+7=0

Suy ra tọa độ M thỏa mãn left{begin{matrix} x-2y+7=0\13x-6y-9=0 end{matrix}right. => M(3;5)

Phương trình đường thẳng BC: 2(x-3)+y-5=0 <=> 2x+y-11=0

B∈BC => B(a;11-2a)

Khi đó: IA=IB <=> a2-6a+8=0 <=> begin{bmatrix} a=4\a=2 end{bmatrix}.

Từ đó suy ra B(4;3), C(2;7) hoặc B(2;7),C(4;3)

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).