Skip to main content

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(\small \frac{1}{2} ; 1). Đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB tương ứng tại các điểm D, E, F. Cho D(3 ; 1) và đường thẳng EF có phương trình y - 3 = 0. Tìm tọa độ đỉnh A, biết A có tung độ dương

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có đỉnh B(\small \frac{1}{2} ; 1). Đường tròn nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB tương ứng tại các điểm D, E, F. Cho D(3 ; 1) và đường thẳng EF có phương trình y - 3 = 0. Tìm tọa độ đỉnh A, biết A có tung độ dương


A.
A(-3 ; -\small \frac{13}{3})
B.
A(3 ; \small \frac{13}{3})
C.
A(-3 ; \small \frac{13}{3})
D.
A(3 ; -\small \frac{13}{3})
Đáp án đúng: B

Lời giải của Luyện Tập 365

\small \overrightarrow{BD} = (\small \frac{5}{2} ; 0) ⇒ BD // EF ⇒ Tam giác ABC cân tại A ⇒ Đường thẳng AD vuông góc với EF, có phương trình: x - 3 = 0, F có tọa độ dạng F(t ; 3) ta có:

BF = BD ⇔ (t - \small \frac{1}{2})2 + 22 = \small \frac{25}{4} ⇔ \small \begin{bmatrix} t=-1\\ t=2 \end{bmatrix}

+Với t = -1 ⇒ F(-1 ; 3)

⇒ đường thẳng BF có phương trình: 4x + 3y - 5 = 0

A là giao điểm của AD và BF ⇒ A(3 ; -\small \frac{7}{3}) (không thỏa mãn yêu cầu A có tung độ dương)

+Nếu t = 2 ⇒ F(2 ; 3); suy ra phương trình BF: 4x - 3y + 1 = 0

⇒ A(3 ; \small \frac{13}{3}) (thảo mãn yêu cầu)

Vậy A(3 ; \small \frac{13}{3})

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.