Skip to main content

Trong mặt phẳng tọa độ Oxy cho tam giác ABC có 3 cạnh lần lượt có phương trình là: AB: 2x-y+4=0; BC: x-2y-4=0; AC: 2x+y-8=0. Viết phương trình đường tròn nội tiếp tam giác ABC.

Trong mặt phẳng tọa độ Oxy cho tam giác ABC có 3 cạnh lần lượt có phương trình là:

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho tam giác ABC có 3 cạnh lần lượt có phương trình là: AB: 2x-y+4=0; BC: x-2y-4=0; AC: 2x+y-8=0. Viết phương trình đường tròn nội tiếp tam giác ABC.


A.
\small (x-1)^{2}+y^{2}=5
B.
\small x^{2}+(y-2)^{2}=5
C.
\small (x-1)^{2}+(y-1)^{2}=3
D.
\small x^{2}+(y-1)^{2}=3
Đáp án đúng: A

Lời giải của Luyện Tập 365

A(1;6); B(-4;-4); C(4;0)

AB=5√5 ; AC=3√5

Gọi D là chân đường phân giác trong của góc A ta có: \small \underset{DB}{\rightarrow}=\frac{-AB}{AC}.\underset{DC}{\rightarrow}

=> D(1;\small \frac{-3}{2})

Gọi I là tâm đường tròn nội tiếp tam giác ABC suy ra I là chân đường phân giác trong góc B của ∆ABD nên ta có: \small \underset{IA}{\rightarrow}=\frac{-AB}{BD}.\underset{ID}{\rightarrow} => I(1;1)

Bán kính r=d(I;AB)= √5

Vậy đường tròn nội tiếp tam giác là: \small (x-1)^{2}+y^{2}=5

Câu hỏi liên quan

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}