Skip to main content

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6 ; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC cso phương trình x + y - 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1 ; -3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho.

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6 ; 6),

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại A có đỉnh A(6 ; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC cso phương trình x + y - 4 = 0. Tìm tọa độ các đỉnh B và C, biết điểm E(1 ; -3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho.


A.
B(-6 ; 2) ; C(2 ; -6) hay B(0 ; -4) ; C(-4 ; 0)
B.
B(6 ; 2) ; C(2 ; -6) hay B(0 ; 4) ; C(-4 ; 0)
C.
B(6 ; 2) ; C(2 ; 6) hay B(0 ; 4) ; C(4 ; 0)
D.
B(6 ; 2) ; C(2 ; 6) hay B(0 ; -4) ; C(-4 ; 0)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Đặt d: x + y - 4 = 0

+ A ∈ ∆ ⊥ d ⇒ ∆: x - y = 0

+ Gọi H = ∆ ∩ d ⇒ H(2 ; 2)

+ Gọi I là trung điểm BC suy ra H là trung điểm IA ⇒ I(-2 ; -2)

+ Đường thẳng (BC) qua I và song song d ⇒ (BC): x + y + 4 = 0

+ B, C ∈ BC ⇒ \left\{\begin{matrix} B(b;-b-4)\\C(c;-c-4) \end{matrix}\right.

\overrightarrow{AB} = (b - 6 ; -b - 10) ; \overrightarrow{EC} = (c - 1 ; -c - 1)

Ta có: \overrightarrow{AB}.\overrightarrow{EC} = 0 và I là trung điểm của BC

⇔ \left\{\begin{matrix} (b-6)(c-1)+(b+10)(c+1)=0\\ b+c=-4 \end{matrix}\right.

⇔ \left\{\begin{matrix} bc+2c+8=0\\ b+c=-4 \end{matrix}\right.

⇔ \left\{\begin{matrix} c=2\\ b=-6 \end{matrix}\right. v \left\{\begin{matrix} c=-4\\ b=0 \end{matrix}\right.

⇒ B(-6 ; 2) ; C(2 ; -6) hay B(0 ; -4) ; C(-4 ; 0)

Câu hỏi liên quan

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.