Skip to main content

Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có diện tích S = 12, giao điểm của hai đường chéo là I (\frac{9}{2};\frac{3}{2}), trung điểm cạnh BC là M(3; 0) và hoành độ điểm B lớn hơn hoành độ điểm C. Xác định tọa độ các đỉnh của hình chữ nhật ABCD.

Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có diện tích S = 12, giao điểm của hai

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có diện tích S = 12, giao điểm của hai đường chéo là I (\frac{9}{2};\frac{3}{2}), trung điểm cạnh BC là M(3; 0) và hoành độ điểm B lớn hơn hoành độ điểm C. Xác định tọa độ các đỉnh của hình chữ nhật ABCD.


A.
B(2; 1); C(3; 1); A(3; 2); D(2; 4)
B.
B(4; -1); C(2; 1); A(7; 2); D(5; 4)
C.
B(2; 4); C(3; 1); A(4; 2); D(2; 5)
D.
B(2; 1); C(1; 1); A(3; 2); D(1; 4)
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có: \overrightarrow {MI} = ({\frac{3}{2};\frac{3}{2}}) nên MI = \frac{3\sqrt{2}}{2} và AB = 2MI =3√2

Suy ra: BC = \frac{S}{AB} = 2√2 => MB = MC = √2

Đường thẳng BC đi qua M và vuông góc với MI có phương trình:x + y - 3 = 0

Gọi B(b; 3 - b) ∈ BC 

MB = √2 <=> (b - 3)2 + (3 - b)2 = 2 <=> \left [ \begin{matrix} b=4\\ b=2 \end{matrix}

+ Với b = 2 có B(2; 1); C(4; -1) loại vì xB < xC

+ Với b = 4 có B(4; -1); C(2; 1); A(7; 2); D(5; 4)

Câu hỏi liên quan

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}