Skip to main content

Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 =9 và đường thẳng ∆:  y = x-3+√3 và điểm A(3,0). Gọi M là một điểm thay đổi trên (C) và B là điểm sao cho tứ giác ABMO là hình bình hành. Tìm toạ độ trọng tâm G của tam giác ABM, biết G thuộc ∆ và G có tung độ dương.

Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 =

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho đường tròn (C): x2 + y2 =9 và đường thẳng ∆:  y = x-3+√3 và điểm A(3,0). Gọi M là một điểm thay đổi trên (C) và B là điểm sao cho tứ giác ABMO là hình bình hành. Tìm toạ độ trọng tâm G của tam giác ABM, biết G thuộc ∆ và G có tung độ dương.


A.
G(-√3;3)
B.
G(1;√3)
C.
G(-3;√3)
D.
G(3;√3)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đường tròn (C) có tâm O(0; 0), bán kính R=3.

Nhận xét: A ∈ (C) => OA=OM. => ABMO là hình thoi => AM ⊥ OB

Gọi I = AM ∩ OB. => OG=small frac{4}{3}OI.

Kẻ GK//AM, K∈OA, ta có:

small underset{OK}{rightarrow}=frac{4}{3}underset{OA}{rightarrow} => K(4;0)

GK//AM => GK⊥ OB => G thuộc đường tròn đường kính OK

Tọa độ G(x;y);y>0 thỏa mãn: small left{begin{matrix} y=x-3+sqrt{3}\(x-2)^{2}+y^{2}=4 end{matrix}right.

<=> small left{begin{matrix} x=y+3-sqrt{3}\(y+1-sqrt{3})^{2} +y^{2}=4 end{matrix}right.<=>left{begin{matrix} x=y+3-sqrt{3}\ 2y^{2}+2(1-sqrt{3})y-2sqrt{3}=0 end{matrix}right.

=> G(3;√3) (do y>0)

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}