Skip to main content

Trong mặt phẳng tọa độ Oxy cho đường thẳng ∆: x + 2y - 3 = 0; điểm A(1; 0), B(3; -4). Hãy tìm trên đường thẳng ∆ một điểm M sao cho |\overrightarrow{MA} + 3\overrightarrow{MB}| nhỏ nhất.

Trong mặt phẳng tọa độ Oxy cho đường thẳng ∆: x + 2y - 3 = 0; điểm A(1; 0), B(3; -4). Hãy

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy cho đường thẳng ∆: x + 2y - 3 = 0; điểm A(1; 0), B(3; -4). Hãy tìm trên đường thẳng ∆ một điểm M sao cho |\overrightarrow{MA} + 3\overrightarrow{MB}| nhỏ nhất.


A.
M(- \frac{2}{5}\frac{19}{6})
B.
M(- \frac{2}{5}; - \frac{19}{5})
C.
M(- \frac{2}{5}\frac{19}{5})
D.
M(\frac{2}{5}\frac{19}{5})
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi I là trung điểm của AB, J là trung điểm của IB. Khi đó I(1; -2); J(\frac{5}{2}; -3)

Ta có: \overrightarrow{MA} + 3\overrightarrow{MB} = (\overrightarrow{MA} +\overrightarrow{MB}) + 2\overrightarrow{MB} = 2\overrightarrow{MI} + 2\overrightarrow{MB} = 4\overrightarrow{MJ}

Vì vậy | \overrightarrow{MA} + 3\overrightarrow{MB}| nhỏ nhất khi M là hình chiếu vuông góc của J trên đường thẳng ∆

Đường thẳng JM qua J và vuông góc với ∆ có phương trình: 2x - y - 8 = 0

Tọa độ điểm M là nghiệm của hệ: \left\{\begin{matrix} x+2y-3=0 & & \\ 2x-y-8=0 & & \end{matrix}\right. ⇔ \left\{\begin{matrix} x=-\frac{2}{5} & & \\ y=\frac{19}{5} & & \end{matrix}\right.

Vậy M(- \frac{2}{5}\frac{19}{5})

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .