Skip to main content

Trong mặt phẳng tọa độ Oxy, cho ∆ABC biết A(3;-7), trực tâm H(3;-1), tâm đường tròn ngoại tiếp là I(-2;0). Xác định tọa độ đỉnh C biết C có hoành độ dương.

Trong mặt phẳng tọa độ Oxy, cho ∆ABC biết A(3;-7), trực tâm H(3;-1), tâm đường

Câu hỏi

Nhận biết

Trong mặt phẳng tọa độ Oxy, cho ∆ABC biết A(3;-7), trực tâm H(3;-1), tâm đường tròn ngoại tiếp là I(-2;0). Xác định tọa độ đỉnh C biết C có hoành độ dương.


A.
C(\sqrt{65}-2;3)
B.
C(2;3)
C.
C(\sqrt{14}-2;-3)
D.
C(\sqrt{65};2)
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi (C) là đường tròn ngoại tiếp ∆ABC, ta có:

(C): Tâm I(-2;0) và bán kính IA=\sqrt{74}

<=>(C):(x+2)2+y2=74

Phương trình đường thẳng (AH) được cho bởi:

(AH): Qua A, H <=> (AH):Qua A(3;-7) và vtcp \vec{AH}(0;6) chọn (0;1)

<=> (AH):x-3=0

Gọi AA1 là đường kính thì BHCA1 là hình bình hành nên HA1 đi qua M là trung điểm BC

Ta có IM là đường trung bình của tam giác A1AH nên:

 \vec{IM}=\frac{1}{2}.\vec{AH}<=> \left\{\begin{matrix} x_{M}=-2\\y_{M}=3 \end{matrix}\right. => M(-2;3)

Vì BC qua M và vuông góc với AH nên có phương trình (BC):y-3=0

Khi đó, tọa độ C thỏa mãn phương trình:

\left\{\begin{matrix} (x+2)^{2}+y^{2}=74\\y-3=0 \\x>0 \end{matrix}\right.<=>\left\{\begin{matrix} x=-2+\sqrt{65}\\y=3 \end{matrix}\right.

Vậy điểm C(\sqrt{65}-2;3)

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).