Skip to main content

Trong mặt phẳng Oxy, cho hình thang cân ABCD có 2 đáy AB và CD, CD = 2AB. Biết A(2; -1), B(4; 1) và điểm M(-5; -4) thuộc đáy lớn của hình thang. Xác định tọa độ đỉnh C và D của hình thang biết điểm C có hoành độ lớn hơn 1.

Trong mặt phẳng Oxy, cho hình thang cân ABCD có 2 đáy AB và CD, CD = 2AB. Biết A(2; -1),

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy, cho hình thang cân ABCD có 2 đáy AB và CD, CD = 2AB. Biết A(2; -1), B(4; 1) và điểm M(-5; -4) thuộc đáy lớn của hình thang. Xác định tọa độ đỉnh C và D của hình thang biết điểm C có hoành độ lớn hơn 1.


A.
C(-3; 4), D(-1; 0)
B.
C(3; -4), D(-1; 0)
C.
C(3; 4), D(1; 0)
D.
C(3; 4), D(-1; 0)
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đường thẳng AB nhận \vec{AB} = (2; 2) là 1 vecto chỉ phương => \vec{n} = (1; -1) là vecto pháp tuyến của đường thẳng AB

=> phương trình đường thẳng AB: 1(x - 2) - 1(y + 1) = 0 <=> x - y - 3 = 0.

CD // AB => CD nhận \vec{n} = (1; -1) là 1 vecto pháp tuyến.

Mà CD đi qua M

=> phương trình đưởng thẳng CD: x - y + 1 = 0

Gọi I là trung điểm của AB => I(3; 0) và H là hình chiếu của I trên CD => H là trung điểm của CD.

Do IH ⊥ AB => IH nhận \vec{AB} là 1 vecto pháp tuyến.

=> phương trình IH: x + y - 3 = 0.

Mà H là giao điểm của IH và CD nên tọa độ H là nghiệm của hệ

\left\{\begin{matrix} x + y - 3 =0 & \\ x - y + 1 = 0 & \end{matrix}\right. <=> \left\{\begin{matrix} x = 1 & \\ y = 2 & \end{matrix}\right.  => H(1; 2)

Giả sử C(c; c + 1). với c > 0

Do H là trung điểm CD nên CH = AB <=> 2(c – 1)2 = 8 <=> c - 1 = 2 hoặc

c - 1 = -2 

<=> c = 3 hoặc c = -1 (loại)

=> C(3; 4), D(-1; 0).

Câu hỏi liên quan

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx