Skip to main content

Trong mặt Oxy cho A(0; 2), B(1; 0), C(-1; 0). Viết phương trình đường tròn (C) tiếp xúc đường thẳng AB, AC lần lượt tại B, C.

Trong mặt Oxy cho A(0; 2), B(1; 0), C(-1; 0). Viết phương trình đường tròn (C) tiếp xúc

Câu hỏi

Nhận biết

Trong mặt Oxy cho A(0; 2), B(1; 0), C(-1; 0). Viết phương trình đường tròn (C) tiếp xúc đường thẳng AB, AC lần lượt tại B, C.


A.
x2 (y-\frac{1}{2})^{2} = \frac{5}{4}
B.
x(y+\frac{1}{2})^{2} = \frac{5}{4}
C.
x(y-\frac{1}{3})^{2} = \frac{5}{4}
D.
x(y+\frac{1}{3})^{2} = \frac{5}{4}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có OB = OC = 1, AB = AC = √5 nên tam giác ABC cân tại A và OA hay Oy là phân giác góc BAC.

Gọi I là tâm đường tròn (C). Vì (C) tiếp xúc với AB, AC lần lượt tại B, C nên

IB = IC, IB ⊥ AB, IC ⊥ AC

Vì IB = IC nên I ∈ Oy ⇔ I(0; m)

Ta có \overrightarrow{IB} = (1;-m), \overrightarrow{AB} = (1;-2)

Do AB, AC đối xứng qua Oy nên yêu cầu bài toán ⇔ IB ⊥ AB ⇔ \overrightarrow{IB} ⊥ \overrightarrow{AB} 

⇔ \overrightarrow{IB}.\overrightarrow{AB} = 0 ⇔ m = - \frac{1}{2}

Gọi R là bán kính đường tròn (C), ta có:

R = IB = \sqrt{IO^{2}+OB^{2}} = \frac{1}{2}√5

Vậy đường tròn (C) cần tìm có tâm I(0; - \frac{1}{2}) bán kính R = \frac{1}{2}√5 có phương trình là x(y+\frac{1}{2})^{2} = \frac{5}{4}

Câu hỏi liên quan

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.