Skip to main content

Trong mặp phẳng (P) cho hình vuông ABCD cạnh a. Trên các tia Ax, Cy cùng phía và vuông góc (P) lần lượt lấy điểm M, N sao cho CN=a, AM=x (0<x<a). Chứng minh rằng BD vuông góc với mặt phẳng (ACNM). Tính x theo a để thể  tích khối tứ diện BDMN bằng \frac{a^{3}}{4}  

Trong mặp phẳng (P) cho hình vuông ABCD cạnh a. Trên các tia Ax, Cy cùng phía và vu

Câu hỏi

Nhận biết

Trong mặp phẳng (P) cho hình vuông ABCD cạnh a. Trên các tia Ax, Cy cùng phía và vuông góc (P) lần lượt lấy điểm M, N sao cho CN=a, AM=x (0<x<a). Chứng minh rằng BD vuông góc với mặt phẳng (ACNM). Tính x theo a để thể  tích khối tứ diện BDMN bằng \frac{a^{3}}{4}  


A.
x=\frac{a}{2}
B.
x=\frac{a}{4}
C.
x=\frac{a}{3}
D.
x=\frac{a}{5}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có Ax⊥ (P)  =>  Ax ⊥BD mà AC ⊥ BD nên BD ⊥ (ACNM)

Ta có VABCDMN = VABDM + VCBDN + VBDMN \Leftrightarrow \frac{1}{3}BD.S_{ACNM}=\frac{1}{3}BD.S_{ADM}+\frac{1}{3}BD.S_{CDN}+\frac{a^{3}}{4}

\Leftrightarrow \frac{1}{3}a\sqrt{2}\frac{1}{2}(x+a)a\sqrt{2}=\frac{1}{3}a\sqrt{2}\frac{1}{2}x.\frac{a}{\sqrt{2}}+\frac{1}{3}a\sqrt{2}.\frac{1}{2}a.\frac{a}{\sqrt{2}}+\frac{a^{3}}{4}

\Leftrightarrow \frac{a^{2}(a+x)}{3}=\frac{a^{2}(a+x)}{6}+\frac{a^{3}}{4}

\Leftrightarrow \frac{a+x}{6}=\frac{a}{4}\Leftrightarrow x=\frac{a}{2}

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).