Trong không gian với hệ trục tọa độ Oxyz tìm M thuộc mặt cầu (S):
(x - 2)2 + (y - 1)2 + z2 = 3 sao cho M cách đều H(1; 0; 1) và mặt phẳng (P): 2x + 2y + z - 1 = 0 một đoạn bằng 2.
Gọi M (a; b; c)
Do M thuộc mặt cầu (S) nên (a - 2)2+ (b - 1)2 + c2 = 3 (1)
Do MH = 2 nên = 2 (2)
Vì d(M; (P)) = 2 ⇔ = 2 (3)
Từ (1), (2) ta được 2a + 2b - 2c = 4 (4)
Từ (3) trường hợp 1: 2a + 2b + c = 7 (5)
Do đó c = 1 thay vào (2); (4) được
Từ (3) trường hợp 2: 2a + 2b + c = -5 kết hợp (4) ta có c = -3
Thay vào (2) được (a - 1 )2 + b2 = -2 (loại)
Kết luận M(1, 2 ,1) hoặc M(3, 0, 1)