Skip to main content

Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: \frac{x-2}{2} = \frac{y+1}{-1} = \frac{z-1}{-1} và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.

Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 =

Câu hỏi

Nhận biết

Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x + y + 2z + 4 = 0, đường thẳng d: \frac{x-2}{2} = \frac{y+1}{-1} = \frac{z-1}{-1} và đường thẳng ∆ là giao tuyến của hai mặt phẳng x = 1, y + z - 4 = 0. Viết phương trình  mặt cầu có tâm thuộc d, đồng thời tiếp xúc với ∆ và (P) biết rằng tâm của mặt cầu có tọa độ nguyên.


A.
Phương trình mặt cầu là (x - 2)2 + (y + 1)2 + (z + 1)2 = 9
B.
Phương trình mặt cầu là (x - 2)2 + (y - 1)2 + (z - 1)2 = 9
C.
Phương trình mặt cầu là (x + 2)2 + (y + 1)2 + (z - 1)2 = 9
D.
Phương trình mặt cầu là (x - 2)2 + (y + 1)2 + (z - 1)2 = 9
Đáp án đúng: D

Lời giải của Luyện Tập 365

Mặt cầu có tâm I(2t + 2; -t - 1; -t + 1) ∈ d. Khi đó d(I,(P)) = \frac{\left|t+9\right|}{3}.

Chọn \overrightarrow{u_{\Delta}} = (0; 1; -1) và M(1; 1; 3) ∈ ∆. Khi đó \overrightarrow{MI} = (2t+1;-t-2;-t-2).

Suy ra: d(I,∆) = \frac{\left|[\overrightarrow{u_{\Delta}},\overrightarrow{MI}]\right|}{\left|\overrightarrow{u_{\Delta}}\right|} = \frac{\sqrt{12t^{2}+24t+18}}{\sqrt{2}}

Từ giả thiết ta có: d(I,(P)) = d(I, ∆) = R

                         ⇔ \frac{\left|t+9\right|}{3} = \sqrt{6t^{2}+12t+9}

                         ⇔ 53t2+90t=0 ⇔ \begin{bmatrix}t=0\\t=-\frac{90}{53}\end{bmatrix}

Vì tâm I có tọa độ nguyên nên t = 0. Khi đó I(2; -1; 1), R = 3.

Suy ra phương trình mặt cầu là (x - 2)2 + (y + 1)2 + (z - 1)2 = 9.

Câu hỏi liên quan

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}