Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho ∆ABC có A(0;0;2), B(0;1;0), C(-2;0;0). Gọi H là trực tâm của ∆ABC. Viết phương trình mặt cầu H tiếp xúc với Oy.

Trong không gian với hệ tọa độ Oxyz, cho ∆ABC có A(0;0;2), B(0;1;0), C(-2;0;0). Gọi H là

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho ∆ABC có A(0;0;2), B(0;1;0), C(-2;0;0). Gọi H là trực tâm của ∆ABC. Viết phương trình mặt cầu H tiếp xúc với Oy.


A.
(x+\frac{1}{3})2 + (y -\frac{2}{3})2 + (z- \frac{1}{3})2= 4
B.
(x+\frac{1}{3})2 + (y -\frac{2}{3})2 + (z- \frac{1}{3})2\frac{2}{9}
C.
(x+1)2 + (y -\frac{2}{3})2 + (z- \frac{1}{3})2\frac{2}{9}
D.
(x+\frac{1}{3})2 + (y -\frac{2}{3})2 + (z- 4)2\frac{2}{9}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Ta có AH \perp BC và AO \perp BC => BC \perp (AOH) => BC \perp OH

Tương tự AB \perp OH. Suy ra OH \perp (ABC)

Phương trình mặt phẳng (ABC): \frac{x}{-2}+\frac{y}{1}+\frac{z}{2} =1 <=> -x+2y+z -2 =0

mp (ABC) có VTPT \vec{n} = (-1;2;1) nên OH có vtcp \vec{u} = \vec{n} = (1;2;-1)

Phương trình đường thẳng OH: \left\{\begin{matrix} x=-t\\ y=2t\\ x=t \end{matrix}\right. => H(-\frac{1}{3};\frac{2}{3};\frac{1}{3})

Khoảng cách từ H tới Oy là R= \frac{\sqrt{2}}{3}

Phương trình mặt cầu tâm H tiếp xúc với Oy là: (x+\frac{1}{3})2 + (y -\frac{2}{3})2 + (z- \frac{1}{3})2\frac{2}{9}

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.