Skip to main content

 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x − y − z +1= 0 và các đường thẳng d: \frac{x+3}{2}=\frac{y}{-1}=\frac{z-7}{2}; d1: \frac{x}{1}=\frac{y-2}{2}=\frac{z-1}{1}; d2\frac{x-1}{1}=\frac{y}{1}=\frac{z-3}{2}. Tìm M ∊  d1, N ∊  d2 sao cho đường thẳng MN song song với (P) đồng thời tao với d một góc α sao cho cosα = \frac{1}{\sqrt{3}}.

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x − y − z +1= 0 và các đường thẳng

Câu hỏi

Nhận biết

 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x − y − z +1= 0 và các đường thẳng d: \frac{x+3}{2}=\frac{y}{-1}=\frac{z-7}{2}; d1: \frac{x}{1}=\frac{y-2}{2}=\frac{z-1}{1}; d2\frac{x-1}{1}=\frac{y}{1}=\frac{z-3}{2}. Tìm M ∊  d1, N ∊  d2 sao cho đường thẳng MN song song với (P) đồng thời tao với d một góc α sao cho cosα = \frac{1}{\sqrt{3}}.


A.
M(-2;-40;-2), N(-1;-19;-5)
B.
M(-21;-40;-20), N(-18;-19;-35)
C.
M(-3;-4;-2), N(0;-1;1)
D.
cả B và C
Đáp án đúng: D

Lời giải của Luyện Tập 365

M ∊ d1 => M(m;2m+2;m+1); N ∊ d2 => N(n+1;n;2n+3). Suy ra:

\overrightarrow{MN} = (-m+n+1;-2m+n-2;-m+2n+2);    \overrightarrow{n_{P}}=(2;-1;-1)

Vì MN //(P)  nên \left\{\begin{matrix} \vec{n}_{P}.\overrightarrow{MN}=0\\ N\notin (P) \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m-n +2=0\\ n\neq 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m=n-2\\ n\neq 0 \end{matrix}\right.

suy ra \vec{u}_{MN} = (3;-n+2;n+4) và \vec{u}_{d} = (2;-1;2)

Suy ra cos(MN;d) = \frac{\left | 3n+12 \right |}{3\sqrt{2n^{2}+4n+29}}=\frac{\left | n+4 \right |}{\sqrt{2n^{2}+4n+29}} = cos α = \frac{1}{\sqrt{3}}

<=> 3(n+4)2 = 2n2 + 4n +29 <=> n2 + 20n + 19 = 0<=> n = -1 hoặc n = -19

*) n =-1 => m=-3 => M(-3;-4;-2), N (0;-1;1)

*) n =-19 => m = -21 => M(-21;-40;-20), N(-18;-19;-35)

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.