Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x +y - z + 10 và đường  thẳng d: \frac{x-2}{1}=\frac{y-1}{-1}=\frac{z-1}{3}  cắt nhau tại điểm I. Gọi  ∆ là đường thẳng nằm trong (P),  ∆ vuông góc với d, khoảng cách từ I đến  ∆ bằng 3√2. Tìm hình chiếu vuông góc của I trên   ∆.  

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x +y - z + 10 và đường  thẳng d:

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x +y - z + 10 và đường  thẳng d: \frac{x-2}{1}=\frac{y-1}{-1}=\frac{z-1}{3}  cắt nhau tại điểm I. Gọi  ∆ là đường thẳng nằm trong (P),  ∆ vuông góc với d, khoảng cách từ I đến  ∆ bằng 3√2. Tìm hình chiếu vuông góc của I trên   ∆.

 


A.
M(6;0;7) hoặc M(0;0;-1)
B.
M(6;0;7) hoặc M(0;0;1)
C.
M(6;0;7)
D.
M(0;0;1)
Đáp án đúng: B

Lời giải của Luyện Tập 365

I = d ∩(P) ⇒ I(3;0;4)

Gọi (Q) là mặt phẳng chứa d và vuông góc với (P) suy ra một vectơ pháp tuyến của(Q) là:   \vec{n}_{Q} = [\vec{n}_{P},\vec{u}_{d}]= (2;−4;−2)//(1;−2;−1) 

Gọi d1 là giao tuyến của 2 mặt p hẳng (P) và (Q) suy ra một vectơ chỉ phương của d1 là: \vec{u}_{d_{1}}=\left [ \vec{n}_{P},\vec{n}_{Q} \right ]  = (−3;0;−3) //( 1;0;1)

Phương trình d1 đi qua I(3;0;4) là \left\{\begin{matrix} x=3+t\\ y=0\\ z=4+t \end{matrix}\right.

Gọi M là hình chiếu của I trên ∆ ⇒ M d1 M(3+t;0;4+t

ta có d(I ;∆) = 3√2 <=>  IM =  3√2 <=>  2t2 = 18 <=> t=3 hoặc t=-3

Vậy M(6;0;7) hoặc M(0;0;1)

 

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.