Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x + 2y + z + 5 = 0, (β): 4x - 3z + 23 = 0. Viết phương trình mặt cầu (S) tiếp xúc với (β) tại A(5;2;1) và cắt (α) theo một đường tròn có diện tích bằng 16π. Biết rằng tâm của mặt cầu (S) có tọa độ nguyên.

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x + 2y + z

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x + 2y + z + 5 = 0, (β): 4x - 3z + 23 = 0. Viết phương trình mặt cầu (S) tiếp xúc với (β) tại A(5;2;1) và cắt (α) theo một đường tròn có diện tích bằng 16π. Biết rằng tâm của mặt cầu (S) có tọa độ nguyên.


A.
(S): (x – 1)2 + (y - 2)2 + (z + 2)2 = 30
B.
(S): (x – 1)2 + (y + 2)2 + (z + 2)2 = 25
C.
(S): (x – 1)2 + (y - 2)2 + (z + 2)2 = 25
D.
(S): (x + 1)2 + (y + 2)2 + (z + 2)2 = 25
Đáp án đúng: C

Lời giải của Luyện Tập 365

Vì mặt cầu (S) tiếp xúc với (β) tại A nên tâm I của mặt cầu (S) nằm trên đường thẳng d đi qua A và vuông góc với (β).

Ta có d: \left\{\begin{matrix} x=5+4t\\y=2 \\z=1+3t \end{matrix}\right.

Mặt cầu (S) cắt (α) theo một đường tròn có diện tích là 16π (r = 4) nên bán kính của mặt cầu (S) được tính theo công thức 

R = \sqrt{d^{2}(I,\left ( \alpha \right ))+r^{2}}  = \sqrt{d^{2}\left ( I,\left ( \alpha \right ) \right )+16}

Vì I ∈ d nên I(5 + 4t;2;1 + 3t). Từ giả thiết ta có 

 IA = \sqrt{d^{2}\left ( I,\left ( \alpha \right ) \right )+16} ⇔ (4t)2 + (3t)2\frac{\left ( 20+11t \right )^{2}}{9} + 16

⇔ 104t2 – 440t – 544 = 0 ⇔ \begin{bmatrix} t=-1\\t=\frac{68}{13} \end{bmatrix}

Vì I có tọa độ nguyên nên I(1;2;-2), R = IA = 5

Vậy (S): (x – 1)2 + (y - 2)2 + (z + 2)2 = 25

Câu hỏi liên quan

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}