Skip to main content

Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng ∆1 \frac{x-2}{1}=\frac{y}{1}=\frac{z}{3} ;  ∆2 : \frac{x}{1}=\frac{y-1}{-1}=\frac{z}{1} và mặt phẳng (P):x +2y -z = 0 . Tìm tọa độ điểm A thuộc đường thẳng ∆và tọa độ điểm B thuộc đường thẳng ∆2 sao cho đường thẳng AB song song với mặt phẳng (P)và độ dài đoạn thẳng AB nhỏ nhất.  

Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng ∆1  ;  ∆2 :  và

Câu hỏi

Nhận biết

Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng ∆1 \frac{x-2}{1}=\frac{y}{1}=\frac{z}{3} ;  ∆2 : \frac{x}{1}=\frac{y-1}{-1}=\frac{z}{1} và mặt phẳng

(P):x +2y -z = 0 . Tìm tọa độ điểm A thuộc đường thẳng ∆và tọa độ điểm B thuộc đường thẳng ∆2 sao cho đường thẳng AB song song với mặt phẳng (P)và độ dài đoạn thẳng AB nhỏ nhất.

 


A.
A(\frac{21}{11};-\frac{1}{11};-\frac{3}{11}) , B(1;1;0); MinAB= \sqrt{}\frac{54}{11}
B.
A(\frac{21}{11};-\frac{1}{11};-\frac{3}{11}) , B(0;1;0); MinAB= 10
C.
A(\frac{21}{11};-\frac{1}{11};-\frac{3}{11}) , B(0;1;0); MinAB= \sqrt{}\frac{54}{11}
D.
A(\frac{21}{11};-\frac{1}{11};-\frac{3}{11}) , B(0;1;0); MinAB= -\sqrt{}\frac{54}{11}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Giả sử A(2+t;t;3t) ∊  ∆1; B(k;1-k;k) ∊ ∆2

= >\overrightarrow{AB} = (k-t-2;-k-t+1;k-3t)

Một vtpt của mp (P) là \vec{n} = (1;2;-1)

AB//(P) khi \overrightarrow{AB}.\vec{n} =0 và B ∉ (P)

\overrightarrow{AB}.\vec{n} =0 <=> k=0 => B(0;1;0) ∉ (P)

Với k=0 => AB = \sqrt{(t+2)^{2}+(t-1)^{2}+9t^{2}}=\sqrt{11(t+\frac{1}{11})^{2}+\frac{54}{11}} ≥ \sqrt{}\frac{54}{11}

Min AB= \sqrt{}\frac{54}{11}đạt được khi A(\frac{21}{11};-\frac{1}{11};-\frac{3}{11}) , B(0;1;0)

 

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.