Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2 ; 0 ; 1), B(0 ; -2 ; 3) và mặt phẳng (P): 2x - y - z + 4 = 0. Tìm tọa độ điểm M thuộc (P) sao cho MA = MB = 3

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2 ; 0 ; 1), B(0 ; -2

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2 ; 0 ; 1), B(0 ; -2 ; 3) và mặt phẳng (P): 2x - y - z + 4 = 0. Tìm tọa độ điểm M thuộc (P) sao cho MA = MB = 3


A.
M(0 ; -1 ; -3) hoặc M(-\frac{6}{7} ; \frac{4}{7} ; \frac{12}{7})
B.
M(0 ; -1 ; 3) hoặc M(-\frac{6}{7} ; \frac{4}{7} ; \frac{12}{7})
C.
M(0 ; 1 ; 3) hoặc M(-\frac{6}{7} ; \frac{4}{7} ; \frac{12}{7})
D.
M(0 ; 1 ; -3) hoặc M(-\frac{6}{7} ; \frac{4}{7} ; \frac{12}{7})
Đáp án đúng: C

Lời giải của Luyện Tập 365

Phương trình (Q) trung trực đoạn AB qua trung điểm I(1 ; -1 ; 2) của AB có VTPT \overrightarrow{IA} = (1 ; 1 ; -1) là: x + y - z + 2 = 0. Giao tuyến d của (P) và (Q) qua J(0 ; 1 ; 3) có VTCP \overrightarrow{a} = (2 ; 1 ; 3) ⇒ Phương tình d: \small \left\{\begin{matrix} x=2t\\y=1+t \\ z=3+3t \end{matrix}\right.

MA = MB , M ∈ (P) ⇒ M ∈ d ⇒ M(2t ; 1 + t ; 3 + 3t)

MA = 3 ⇔ (2 – 2t)2 + (-1 – t)2 + (-2 – 3t)2 = 9

⇔ t = 0 hay t = -\frac{3}{7}. Vậy M(0 ; 1 ; 3) hoặc M(-\frac{6}{7} ; \frac{4}{7} ; \frac{12}{7})

Câu hỏi liên quan

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.