Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(2 - √2; 2-; -3) và đường thẳng d: \left\{\begin{matrix}x=2\\y=1-t,t\in R\\z=t\end{matrix}\right. , t ∈ R .Tìm điểm C trên đường thẳng d sao cho chu vi tam giác ABC nhỏ nhất.

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(2 - √2; 2

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(2 - √2; 2-; -3) và đường thẳng d: \left\{\begin{matrix}x=2\\y=1-t,t\in R\\z=t\end{matrix}\right. , t ∈ R .Tìm điểm C trên đường thẳng d sao cho chu vi tam giác ABC nhỏ nhất.


A.
 C ( 2;  \frac{7}{3} ; - \frac{4}{3})
B.
 C ( - 2;  \frac{7}{3} ; - \frac{4}{3})
C.
 C ( 2; - \frac{7}{3} ; - \frac{4}{3})
D.
 C ( 2;  \frac{7}{3} ;  \frac{4}{3})
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: C(2;1 – t ; t), CA = \sqrt{2t^{2}+4t+3}, CB = \sqrt{2t^{2}+8t+12}

=>\frac{CA+CB}{\sqrt{2}} = \sqrt{(t+1)^{2}+\frac{1}{2}} + \sqrt{(t+2)^{2}+2}

Đặt  \vec{u}= (t + 1;\frac{1}{\sqrt{2}} ), \vec{v}= ( - t – 2; √2).

Ta có: |\vec{u}  |   +  | \vec{v}  |  ≥ | \vec{u} +  \vec{v} | =>chu vi tam giác ABC nhỏ nhất khi \vec{u},\vec{v} cung chiều  ⇔\frac{t+1}{-t-2} = \frac{1}{2}⇔  t = - \frac{4}{3}

Vậy C ( 2;  \frac{7}{3} ; - \frac{4}{3})

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx