Skip to main content

Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ có phương trình \frac{x}{2}=\frac{y+1}{-2} = \frac{z-1}{1}1) Tính khoảng cách từ điểm O đến đường thẳng Δ.  2) Viết phương trình mặt phẳng chứa điểm O và đường thẳng Δ. 

Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ có phương trình <

Câu hỏi

Nhận biết

Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ có phương trình \frac{x}{2}=\frac{y+1}{-2} = \frac{z-1}{1}1) Tính khoảng cách từ điểm O đến đường thẳng Δ.  2) Viết phương trình mặt phẳng chứa điểm O và đường thẳng Δ. 


A.
1)d(O, ∆) = 1;   2) phương trình của (P) là:   x + 2y + 2z  =  0.
B.
1)d(O, ∆) = 2; 2) phương trình của (P) là:  −x − 2y + 2z  =  0,  hay  x + 2y - 2z  =  0.
C.
1)d(O, ∆) = 1; 2) phương trình của (P) là:  x − 2y − 2z  =  0,  hay  - x + 2y + 2z  =  0.
D.
1)d(O, ∆) = - 1; 2) phương trình của (P) là:  −x − 2y − 2z  =  0,  hay  x + 2y + 2z  =  0.
Đáp án đúng: A

Lời giải của Luyện Tập 365

1.Từ phương trình của ∆ suy ra ∆ đi qua điểm M(0; −1; 1) và có vectơ chỉ phương \vec{u}= (2; −2; 1).

Do đó   d(O, ∆)  = \frac{|[\overrightarrow{MO},\vec{u}]|}{|\vec{u}|}

Ta có  \overrightarrow{MO} =  (0; 1; −1). Do đó  [\overrightarrow{MO},\vec{u}] = (-1;-2;-2).

Vì vậy   d(O, ∆) = \frac{\sqrt{(-1)^{2}+(-2)^{2}+(-2)^{2}}}{\sqrt{2^{2}+(-2)^{2}+1^{2}}} = 1.

2. Gọi (P) là mặt phẳng chứa điểm O và đường thẳng ∆. Do vectơ \vec{n}= [\overrightarrow{MO}, \vec{u}] có phương vuông góc với (P) nên \vec{n} là một vectơ pháp tuyến của (P).

Suy ra phương trình của (P) là:  −x − 2y − 2z  =  0,  hay  x + 2y + 2z  =  0.

 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .