Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1;3 ; -2) và mặt phẳng (P): x – 2y – 2z + 5 = 0. Tính khoảng cách từ A đến (P). Viết phương trình mặt phẳng đi qua A và song song với (P).

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1;3 ; -2) và mặt ph

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho các điểm A(-1;3 ; -2) và mặt phẳng (P): x – 2y – 2z + 5 = 0. Tính khoảng cách từ A đến (P). Viết phương trình mặt phẳng đi qua A và song song với (P).


A.
Phương trình mặt phẳng cần tìm là x – 2y – 2z - 3 = 0.  
B.
Phương trình mặt phẳng cần tìm là x + 2y – 2z + 3 = 0.  
C.
Phương trình mặt phẳng cần tìm là x – 2y + 2z + 3 = 0.  
D.
Phương trình mặt phẳng cần tìm là x – 2y – 2z + 3 = 0.  
Đáp án đúng: D

Lời giải của Luyện Tập 365

d(A,(P)) = \frac{|(-1)-2.3-2.(-2)+5|}{\sqrt{1^{2}+(-2)^{2}+(-2)^{2}}} = \frac{2}{3}.

Vectơ pháp tuyến của (P) là \vec{n}= (1; -2;-2).

Phương trình mặt phẳng cần tìm là x – 2y – 2z + 3 = 0.

 

Câu hỏi liên quan

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.