Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho A(1 ; -1 ; 1), mặt phẳng (P): 2x + y - 2z + 2 = 0, đường thẳng d: \frac{x-1}{3} = \frac{y+1}{1} = \frac{z}{1}. Lập phương trình mặt cầu (S) có tâm nằm trên đường thẳng d, có bán kính nhỏ nhất, tiếp xúc với mặt phẳng (P) và đi qua điểm A

Trong không gian với hệ tọa độ Oxyz, cho A(1 ; -1 ; 1), mặt phẳng (P): 2

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho A(1 ; -1 ; 1), mặt phẳng (P): 2x + y - 2z + 2 = 0, đường thẳng d: \frac{x-1}{3} = \frac{y+1}{1} = \frac{z}{1}. Lập phương trình mặt cầu (S) có tâm nằm trên đường thẳng d, có bán kính nhỏ nhất, tiếp xúc với mặt phẳng (P) và đi qua điểm A


A.
(S): (x – 1)2 + (y + 1)2 + z2 = 1
B.
(S): (x – 1)2 + (y + 1)2 - z2 = 1
C.
(S): (x + 1)2 + (y + 1)2 + z2 = 1
D.
(S): (x – 1)2 + (y - 1)2 + z2 = 1
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi I là tâm của mặt cầu (S)

Vì I nằm trên đường thẳng d nên I(1 + 3t ; -1 + t ; t)

Khi đó IA = \sqrt{11t^{2}-2t+1} là bán kính của mặt cầu (S)

Vì (P) tiếp xúc với mặt cầu (S) nên

d(I , (P)) = IA ⇔ \frac{|5t+3|}{3} = \sqrt{11t^{2}-2t+1}

⇔ 37t2 – 24t = 0 ⇔ [\begin{matrix} t=0\\t=\frac{24}{37} \end{matrix} ⇔ [\begin{matrix} R=1\\R=\frac{77}{37} \end{matrix}

Vì mặt cầu (S) có bán kính nhỏ nhất nên ta chọn t = 0, R = 1.

Khi đó I(1 ; -1 ; 0). Vậy phương trình mặt cầu cần tìm là

(S): (x – 1)2 + (y + 1)2 + z2 = 1

Câu hỏi liên quan

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.