Skip to main content

  Trong không gian Oxyz, cho mặt phẳng (P): x + 2y – 2z + 1 = 0 và hai điểm A(1; 7;-1), B(4; 2; 0). Lập phương trình đường thẳng d là hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (P).  

Trong không gian Oxyz, cho mặt phẳng (P): x + 2y – 2z + 1 = 0 và

Câu hỏi

Nhận biết

  Trong không gian Oxyz, cho mặt phẳng (P): x + 2y – 2z + 1 = 0 và hai điểm A(1; 7;-1), B(4; 2; 0). Lập phương trình đường thẳng d là hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (P).  


A.
\dpi{80} \left\{\begin{matrix} x=-13-4t\\ y=6+3t\\ z=t\end{matrix}\right.
B.
\dpi{80} \left\{\begin{matrix} x=-13-5t\\ y=6+2t\\ z=t\end{matrix}\right.
C.
\dpi{80} \left\{\begin{matrix} x=-13-5t\\ y=5+2t\\ z=-t\end{matrix}\right.
D.
\dpi{80} \left\{\begin{matrix} x=-13-5t\\ y=5+t\\ z=-t\end{matrix}\right.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi (Q) là mặt phẳng qua A, B và vuông góc với (P). Ta có d là giao của (Q), (P).

\dpi{80} \vec{AB}= (3; -5; 1), \dpi{80} \vec{n_{P}} = (1;2;-2) => \dpi{80} \vec{n_{Q}} = \dpi{80} \left [ \vec{AB}, \vec{n_{P}}\right ] =(8; 7; 11)

=> (Q): 8x + 7y + 11z -46 = 0. Vì d = (P) ∩ (Q).

=> d: \dpi{80} \left\{\begin{matrix} 8x + 7y+11z-46=0\\ x+2y-2z+1=0\end{matrix}\right. <=>\dpi{80} \left\{\begin{matrix} x=-13-4t\\ y=6+3t\\ z=t\end{matrix}\right.    \dpi{80} \left ( t\epsilon \mathbb{R} \right )

Câu hỏi liên quan

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).