Skip to main content

Trong hệ trục tọa độ Oxyz cho A(1;0;4), B(7;2;2) và mặt phẳng (P): x + y + z + 8 = 0. Tìm M trên mặt phẳng (P) sao cho MA2 + MB2 nhỏ nhất.

Trong hệ trục tọa độ Oxyz cho A(1;0;4), B(7;2;2) và mặt phẳng (P): x + y

Câu hỏi

Nhận biết

Trong hệ trục tọa độ Oxyz cho A(1;0;4), B(7;2;2) và mặt phẳng (P): x + y + z + 8 = 0. Tìm M trên mặt phẳng (P) sao cho MA2 + MB2 nhỏ nhất.


A.
M(-\frac{4}{3} ; - \frac{13}{3};  \frac{7}{3}).
B.
M(\frac{4}{3} ; - \frac{13}{3}; - \frac{7}{3}).
C.
M(-\frac{4}{3} ; - \frac{13}{3}; - \frac{7}{3}).
D.
M(-\frac{4}{3} ;  \frac{13}{3}; - \frac{7}{3}).
Đáp án đúng: C

Lời giải của Luyện Tập 365

Lấy I là trung điểm của AB. Tọa độ I(4;1;3)

Theo công thức đường trung tuyến: MA2 + MB2 = 2MI2\frac{AB^{2}}{2}

Do đó MA2 + MB2 nhỏ nhất ⇔ MI nhỏ nhất ⇔M là hình chiếu vuông góc của I lên mặt phẳng (P)

Do MI vuông góc với (P) nên  \overrightarrow{IM}= t.\overrightarrow{n_{P}} = (1;1;1)

Suy ra M(4 + t;1 + t; 3 + t )

Do M ∈(P) nên 4 + t + 1 + t + 3 + t + 8 = 0, suy ra t = - \frac{16}{3}

Vậy M(-\frac{4}{3} ; - \frac{13}{3}; - \frac{7}{3}).

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.