Skip to main content

Hai bạn An và Bình thi đấu với nhau một trận bóng bàn. Họ quy ước chơi với nhau nhiều nhất 5 séc, ai thắng trước 3 séc là người thắng cuộc và trận đấu kết thúc.Tính xác xuất để trận đấu kết thúc sau séc thứ tư, biết rằng xác suất An thắng trong mỗi séc là 0,4 và séc nào cũng có người thắng

Hai bạn An và Bình thi đấu với nhau một trận bóng bàn. Họ quy ước chơi v

Câu hỏi

Nhận biết

Hai bạn An và Bình thi đấu với nhau một trận bóng bàn. Họ quy ước chơi với nhau nhiều nhất 5 séc, ai thắng trước 3 séc là người thắng cuộc và trận đấu kết thúc.Tính xác xuất để trận đấu kết thúc sau séc thứ tư, biết rằng xác suất An thắng trong mỗi séc là 0,4 và séc nào cũng có người thắng


A.
P=0,3744
B.
P=0,2105
C.
P=0,4468
D.
P=0,285
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi H là biến cố trận đấu kết thúc sau 4 séc; A là biến cố An là người thắng chung cuộc, A1 là biến cố An thắng séc thứ I, B là biến cố Bình thắng chung cuộc B1 là biến cố Bình thắng séc thứ i: i=1,2,3,4. Khi đó ta có H=A ∪B

A=”Trong 3 séc đầu An thắng 2 séc và séc thứ tứ An thắng”

=(A1A2B3 ∪ A1B23 ∪ B1A2A3)A4

B=” Trong 3 séc đầu Bình thắng 2 séc và séc thứ tư Bình thắng”

=(B1B2A3 ∪ B1A2B3 ∪ A1B2B3)B4

Từ giả thuyết suy ra P(A1)=0,4, P(B1)=0,6 với i=1,2,3,4.

Theo công thức tính xác xuất ta có:

P(A)=3.(0,4)2.0,6.0,4=0,1152

P(B)=3.(0,6)2.0,4.0,6=0,2592

Suy ra P(H)=P(A)+P(B)=0,3744

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.