Giải phương trình: x2 – (3 – 2x)x + 2(1 – 2x) = 0
Phương trình tương đương với
x2 – 3x + 2 + 2x(x – 2) = 0
⇔ (x – 1)(x – 2) + 2x(x – 2) = 0
<=>
Xét hàm số f(x) = 2x + x – 1, f’(x) = 2xln 2 + 1 > 0 ∀x ∈ R
Vậy f(x) đồng biến trên R
Lại có f(0) = 0 nên phương trình f(x) = 0 có 1 nghiệm duy nhất là x = 0
Vậy phương trình đã cho có 2 nghiệm x = 0, x = 2