Skip to main content

Giải hệ phương trình: \left\{\begin{matrix} \sqrt{7x+y}-\sqrt{2x+y}=4\\2\sqrt{2x+y}-\sqrt{5x+8}=2 \end{matrix}\right.

Giải hệ phương trình:

Câu hỏi

Nhận biết

Giải hệ phương trình: \left\{\begin{matrix} \sqrt{7x+y}-\sqrt{2x+y}=4\\2\sqrt{2x+y}-\sqrt{5x+8}=2 \end{matrix}\right.


A.
(x;y)=(\frac{5}{6};\frac{13}{5})
B.
(x;y)=(\frac{6}{5};\frac{12}{5})
C.
(x;y)=(\frac{55}{6};\frac{11}{5})
D.
(x;y)=(\frac{56}{5};\frac{13}{5})
Đáp án đúng: D

Lời giải của Luyện Tập 365

Đặt u=\sqrt{7x+y}≥0, v=\sqrt{2x+y}≥0

=> u2-v2=5x. Khi đó hệ phương trình đã cho trở thành

\left\{\begin{matrix} u-v=4\\2v-\sqrt{u^{2}-v^{2}+8}=2 \end{matrix}\right. 

<=>\left\{\begin{matrix} u-v=4\\2v-\sqrt{(u+v)(u-v)+8}=2 \end{matrix}\right.

<=> \left\{\begin{matrix} v+4=u\\v-\sqrt{2v+6}=1 \end{matrix}\right.

Giải hệ trên ta được u=9, v=5

Khi đó hệ phương trình trở thành:

\left\{\begin{matrix} \sqrt{7x+y}=9\\\sqrt{2x+y}=5 \end{matrix}\right.<=>\left\{\begin{matrix} x=\frac{56}{5}\\y=\frac{13}{5} \end{matrix}\right.

Vậy hệ phương trình có nghiệm (x;y)=(\frac{56}{5};\frac{13}{5})

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình:

    Giải phương trình:log_{2}(4x^{4}-7x^{2}+1)-log_{2}x=log_{4}(2x^{2}-1)^{2}+1

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.